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ABSTRACT 

A systematic way to formulate stable difference expressions for initial and mixed 
boundary value problems is presented. It is shown that difference schemes must satisfy 
“invariants” in order to be stable, consistent approximations to the partial differential 
equation. An open loop technique is presented to choose a stable time step, At. 

I. INTRODUCTION 

The stability analysis of difference schemes for pure initial-value type problems 
is well developed [I], but this theory is restricted to constant coefficient, linear 
partial differential equations. There is no corresponding analysis for difference 
approximations to variable coefficient, mixed boundary-initial-value type. In fact, 
there does not exist, for either class of equations, a systematic way to choose the 
difference approximations. This paper shows that an expansion of the Schur-Cohn 
determinants determines the type of difference schemes which should be used 
as well as provides an open loop (as opposed to iterative) method to evaluate 
stability of the difference scheme during the course of the calculation. “Evaluating 
the stability” of the difference equations for varying coefficients is heuristic, 
but it is often the only alternative when calculations must be performed for varying 
coefficient partial differential equations. 

1 This work was sponsored in part by the Allegheny-Ludlum Corporation and the Richard 
K. Mellon Foundation. 

358 



DIFFERENCE METHODS 359 

II. THE INITIAL VALUE PROBLEM 

Consider the nth order linear, constant coefficient partial differential equation 
definedonR:{O<t<T,--oo<x<co}: 

&4 - - a' an+ 
atn 

- - & a94 - . . . n-i ap-1 n-2 atn-2 

-a;24 - p,,g - fine2 g$ a** -/3 24 = 0, 

where the a; are the sum of several differential operators (a/ax) with respect to 
the independent space variable x, which is treated here as a single independent 
variable. The /3$ are constants. The problem is: given the II initial conditions 
~(0, x) &/at(O, x)..., find u(t, x) on the domain as governed by the equation (l), 
where t is to be considered as time. 

The finite difference approximation to u(t, x) is obtained by partitioning or 
discretizing the domain R and solving for the dependent variable at the mesh 
points by means of consistent approximations to the derivatives of (1). 

III. SPACE DERIVATIVE APPROXIMATIONS 

It is subsequently shown that when difference equations are used to obtain the 
discrete solution by means of a row-by-row calculation in time, the approxi- 
mations to the space derivatives must have a “definiteness” property. That is, 
consider an approximation to a gth derivative [2]: 

where at least g + 1 values of r and y,. are required. When r = 0, 1,2,... this is 
a forward difference scheme. The central and backwards schemes of all orders of 
accuracy are a form of (2). The Fourier transform of (2) with respect to the space 
axis with k as the transform or dual variable: 

has complex coefficients which are periodic in k. Let Re{ } and Im{ } denote the 
real and imaginary parts of the coefficients, then: 

DEFINITION 1. An even order derivative is said to be approximated by a 
definite difference scheme if the imaginary part is uniquely zero and the real part 
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of the coefficients of its Fourier transform are bounded from above or below 
by zero for all k. That is: 

Re{ 1 d 0 or Re( } 2 0. 

The algebraic sign is positive for g = 4,8, 12, and negative for g = 2, 6, 10. 

DEFINITION 2. An odd order derivative is said to be approximated by a 
definite difference scheme if 

Re{ > < 0 or Re{ } 3 0 

while for the same scheme, the imaginary part may be expressed by 

where the quantityf(kAx) is bounded from above or below for all k: 

.fWx) 2 0 or f(kAx) < 0. 

The algebraic sign off(kAx) depends on the order of derivative. The following 
property for the odd order derivatives is proven by construction, and has been 
established through the 7th order. 

Property I An odd gth order derivative may be approximated by a g + 1 point 
difference scheme which may have, as desired, a negative or positive definite 
real Fourier transform coefficient while the quantityf(kAx) is definite. 

The forward and backwards difference schemes for a first derivative 

au 
ax 2% 

u(t, x + Ax) - u(t, x) 
Ax 

&d u(t, x) - u(t, x - Ax) 
~ze---- AX 

(44 

W) 

have negative and positive definite real parts respectively for their Fourier trans- 
forms. 

IV. TIME DERIVATIVE APPROXIMATIONS 

Let the e$ differential operators of (1) be approximated by difference expressions 
and the resulting differential-difference equation be Fourier transformed with 
respect to the space axis to yield: 

anu an-1u -- - . . . 
atn %-1 ap-i -obu-j3n-1~...-pJJ=o. (5) 
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An example of this process is: 

= ( 
#AZ - 2 + e-jkAZ 

AX 1 z p, k) = a1 z. 
(6) 

Next, the time derivatives of (5) may be approximated by difference expressions. 
There are a large variety of ways in which this may be accomplished. Since a 
change in variables will permit a difference scheme for a gth derivative to be reduced 
to a g + 1 step process, there is no loss in generality by expression atlU/W of (5) 
by an n + 1 step approximation and expressing aiU/ati i = 0, 1,2,..., n - 1 
by means of ap + 1 step process wherep > n. Hence (5) becomes: 

1.. (-1)” u9-nl 

- && (b,U” + &UP-l + b,Up-2 .-. + b,,Up-” $ b,-lU”-m-l **. b,.P) 

- $g (c&’ + clU”-2 + c,U”-3 *** cnU9-n a** c,UO) 

_8”“{ : }... 
At”-l - Bd > = 0, (7) 

where the notation ZP-” = U(t + (p - v) At, k) has been used to clarify the 
expression. Note that the nth derivative has been grouped at the 
steps. The coefficients b, must be such that: 

i bv = 0, 

highest time 

(8) 

in order to be consistent to 8n-1U/W-1 and p - n + 1 degrees of freedom are 
available to choose the b, coefficients. The other approximations to aiU/ati must 
satisfy restrictions similar to (8) and p - i degrees of freedom are available to 
adjust the coefficients. The coefficients may be chosen to insure a stable difference 
scheme. 
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V. STABILITY OF THE DIFFERENCE APPROXIMATIONS 

If dummy variables are substituted for each of the p steps in (7), this equation 
may be brought into vector form: 

Vm+l = G’(dt, Ax, k) V” (94 

where G’ is ap x p matrix and an intermediate inverse matrix may have to exist. 
Then if dx = f@t) wherefis continuous and such thatf(0) = 0, then (9a) becomes 

Vm+l = G(At, k) V”. C’b) 

It is seen that m applications of (9b) carries the initial conditions into the 
difference solution at (m + 1) At, hence the definition [I 1: 

DEFINITION 3. A difference scheme for an initial-value problem is termed 
stable if for some positive T, the matrices: 

G(At, k)” for 
I 

O<At<T 
0 <mAt < T 
all k 

are uniformly bounded. 

The stability condition which is used here is: 

THEOREM-VOW Neuman [I]. A necessary condition for stability of the d&rence 
scheme is that the eigenvalues of the matrix G(At, k) must be: 

O<At<T 
1 hi / < 1 + O(At) for all k (10) 

i = 1, 2, 3 ,..., p. 

If equation (7) is multiplied by Atn, it is seen that the characteristic equation is: 

p(h) = hp[l - a,-,b,&lt - +,c0At2 - CX,-~ d,,At3 a*- - &.lr,,At ..*I 
+ hq--n - a,-,b,At - a,-zc,At2 - (Y,-~ dlAt3 *.. - ,B,-,r,At aa.1 

+ P-n[(--l)n L a?,-lb,At - oL,-,c,At2 +.. - /3,+,r,At ***I 
+ hp-~-l[-~n--lbn--lAt - an-2c+lAt2 .*a - /3,+lr,-lAt *.*‘J 

+ P[--cll,-,b,& - ~,-2c,,At2 a.. - or,-lrodt *** - por&“] 
= aA@ + a,-JP-l + a,-2XP-2 *** + a0 . (11) 
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The roots of this complex polynomial must satisfy (10) in order for the difference 
equation to be stable. The known technique for testing the roots of p(h) with 
respect to the unit circle of a complex plane is the Schur-Cohn criterion: 

Schur-Cohn Criterion [3]. If for the polynomial 

p(h) = a, + a,h + a$ + ash3 *a* a,-,W1 + a,hP (12) 

all the determinants: 

A, = 

a0 
al 
a2 
a3 

a0 
4 
a2 

a0 0 

al a0 

a0 
al a0 

a,-, as-2 as-3 a2 al a0 
____-_--------------- 

a9 
a,-, a9 - 
a9-2 a94 a9 0 
- - 
aa--3 a9-2 a,-, a9 

- 
ap-a+l ap-s+2 a9-s+3 

a9 
- - 
a,-, a9 

a,-2 a,-1 iin 

a,+ 
a,-,,, 

0 a9 a,-, a9-2 
a9 a9-l 

a9 
-------------------. 
-- - - a0 a, a2 a, *.* a,- - - - 

a0 al a2 
a0 6 

. 

0 -- - 
a0 al a2 

a0 al 
- 
a0 

s= 1,2,3,4 ,... p 
(13) 

are different from zero, then p(h) has no zeros on the unit circle 1 h ] = 1 and 
r zeros within this circle; r being the number of variations in sign of the determinant 
sequence 1, A, , A,, A,, A, ,..., A, . To have all the roots inside the unit circle: 

A, <0 for s = 1, 3, 5, 7, 9 ,..., odd determinants (14) 

A, > 0 for s = 2, 4, 6, 8 ,..., even determinants (15) 

In equation (13) the bar over the function denotes complex conjugate. 
Note that the quadrants obtained by partitioning the 2p x 2p determinant (13) 

are upper or lower triangular matrices. These matrices commute, and the result 
is ap x p Hermitian matrix whose determinant is real. The determinants for s < p 
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are the principal minors of thep x p Hermitian matrix. For example, whenp = 3: 

aOh - w3 goa - ala3 

-------------------- 
I - - 

GA - &a3 , aoao - a3a3 aOaO - a2a3 

A, = I +w1 - a2%2 

I 
4 

---------- 
I 1 - - 

g$za, - HlU, , a,a, - a,a, , aoao - a3a3 
(16) 

To examine the roots of (11) several simplifications can be made. The first of these 
is that the “homogeneous” part of (11) predominately fixes stability of the difference 
scheme.The homogeneous part is considered to be the difference approximations to: 

The terms from the /Ii are “nonhomogeneous”. 
If the gth eigenvalue of (11) is written as: 

At At2 
A, = fl ($, g ,...) - - -.a 

Ax2 ’ Ax2 1 
+f,(At, AP, At3 .a.), (17) 

it is seen that the homogeneous part of equation (11) dominates fi( ) and hence 
unity of equation (10). The nonhomogeneous terms from pi introduce cross 
products in At or else terms infz( ), both of which are small and can be included 
in O(At). This consideration of the homogeneous part extends to a system of 
first time order partial differential equations which are expressed in matrix form. 

The second simplification in examining the stability of (11) is that the expansion 
of the Schur-Cohn determinants (13) yields real terms which can be arranged in 
ascending powers of At, At2, At3,... . The result is given as: 

PROPOSITION I. If the following conditions are met for the d@erence approxi- 
mation to equation (1) 

(a) definite dxerence schemes are used to approximate the space derivatives 

(b) the lowestpower At-term of each Schur-Cohn determinant of the character- 
istic polynomial is of the proper algebraic sign and is nonzero except at 

k = 0,27r/Ax, 4r/Ax,... 

then the difference approximation satisfies the Von Neumann necessary condition 
for stability as At + 0 for a fixed Ax. 
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To see the basis for the proposition, note the use of definite difference schemes 
forces the lowest power dt term in the Schur-Cohn determinants to approach 
zero from one direction only as k varies, -co < k < co. The odd derivatives 
contribute sin 2s kAx as a factor, s = 0, 1, 2 ,..., because each determinant is real. 
With these two consequences of definite difference schemes, d t can always be made 
small enough such that the lowest power of d t dominates the determinant. 

Proposition I is also an “open loop” (as opposed to iterative) method to test 
the roots of a difference scheme. Although such a test is unnecessary for linear, 
constant coefficient equations, it is useful if the stability of the difference scheme 
must often be tested during the course of the solution. 

VI. PROPERTIES OF TIME POLYNOMIAL APPROXIMATIONS 

In this section the “invariants” of polynomial difference approximations are 
presented. The “invariants” are relationships which are true for all consistent 
approximations to an equation since they are limiting quantities which hold as 
At-O. 

Consider first the three-step time difference approximation to a second order 
equation: 

PU - 1 __ - 
at2 Ly. ~-oroU~ bar 

l at [ 
--+l‘l+clOlo 
At2 At 1 #ylL+1 

+[-g+g+ IL/m + c2ao 

+[&-+% + wo] Urn-l, (18) 

where the space dependency has been approximated and Fourier transformed 
prior to this step. 

The characteristic polynomial of (18) is: 

p(X) = [l + blAtal + clAt2c+,] h2 
+ [-2 + b&al + c2At2ao] X + [l + b,Ata, + c,At201,] 

= a,X2 + u,h + a, = 0. 

The constraints are: 

b, + b, + b, = 0~ 
2b, + b, = -1, 

Cl + c2 + c3 = -1. 

(19) 

(20) 
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The Schur-Cohn determinants and their proper signs are: 

(22) 

The coefficients of equation (19) are introduced into d, and d, . After eliminating 
b, , b3, and c, and expanding these determinants, it is seen that the lowest power 
At terms are “invariant” with respect to the remaining hi’s and C~‘S which have 
not been specified. 

Property II. The “invariants” of a three-step polynomial approximation to a 
second-order PDE are: 

A, z A& + k), (23) 

A, gyg At”@, - Q - At4(a, + ~~)(a& + ~,,a~). (24) 

The invariants are the lowest terms in At. For example, the full expression for A, is: 

A, = At(a, + T&) + At2(-1 - c, - cp)(ao + E,,) 
+ AP(1 - 2bJ ol,clll 

+ At3(-1 - b, - c, - c2 - 2b,c, - b,c,)(q& + E,,cul) 

+ At4(1 + 2c, + 2c, + c12 + 2c,c,) a@,, . (25) 

Property II shows the lowest order At terms which do not vanish for the three- 
step method are independent of the polynomial approximations used for a~&@ 
and IX&. Thus, in A,, it is seen that regardless of the derivative operators that 
a; describes, these operators must result in a negative definite real part for g ; 
that is: . 

Reid d 0 (26) 

in order to have A, < 0. When a definite difference scheme is used with Re{q} < 0, 
A, possesses the proper algebraic sign for all k, and one root of the equation remains 
inside the unit circle due to the fact the first Schur-Cohn criterion is satisfied. 
The second determinant involves the product of several terms. In (24) let: 

a,, = a + jb, aI = c + jd. 

Then the invariant part of A, is: 

A, c -4b2At4 - 2c(2ac + 2bd) At4 

- 4At4{-b2 - ac2 - bed). = 

(27) 

(28) 
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Since A, requires c to be negative, in order that A2 > 0, the second condition 
must have a < 0 and/or Sign b = Sign d. The terms b and d must have Sin kAx 
as a factor if they represent a definite difference approximation. Note for b f 0, 
LYE cannot have any odd order space derivative higher than the square of the largest 
power 01~ space derivative or else A, cannot be made positive. 

Observe from equation (13) that A, = a,&, - a& for any Schur-Cohn system 
of determinants, so that the most advanced time-step must necessarily also contain 
a term of the approximation for the highest time derivative in order to have 
A, <OasAt-+O. 

If the highest time derivative is reduced to its minimal form and grouped at 
the most advanced time-steps then a general theorem is the following: 

PROPOSITION II. Every p + 1 time-step approximation to an nth order equation 
in time has identically the same invariants for the A,,,, , Ap--n+2 , A,-,+, ,..., A, 
Schur-Cohn determinants. Only the higher order At terms and the A, , A, , A,, 
A 4 ,..., A,+, determinants vary with the type of approximation where p 2 n. 

The argument to support this theorem is that if the time polynomial approxi- 
mations are consistent to the equation, then, in the limit as At + 0 only the lowest 
order terms-the invariants-dominate in the final n determinants. 

Consider the partial differential equation: 

a3u -- 
at3 

ol' a"u - & au - a'u = 0 
2 at2 1 at 0 * (29) 

A general four time-step approximation to this equation has the characteristic 
polynomial: 

p(X) = X3(1 + b,Atol, + c,At%, + dIAt3a0) 
+ P(-3 + b2Ator, + c,AP~, + dzAt30ro) 
+ X(3 + b,Atcll, + c,At%, + d3At3010) 
+ (-1 + b,Atol, + c,At2a, + d,At3010). (30) 

The constraints which must be satisfied by the coefficients in the Polynomial are: 

d,+d,+d,+d,=-1 c,+c,+c,+c,=O b,+b,+h+b~=O 
3c,+'k,+C,=--1 3b,+2b,+b3=0 (31) 

9b, + 4b, + b, = -1. 

The constraints are used to eliminate d4, c3, c, , bz , b3 , and b4 , and the Schur- 
Cohn determinants are given by the principal minors of equation (16). When the 
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determinants of equation (16) are expanded, the invariants of a third-order equation 
are: 

A, g &(a, + E2). (32) 

A, s Lltya, - &)2 - Lltya, + G2)( “& + +,) - dt4(a, + ~2)(010 + &o). (33) 

A, z dP(ao + EJ3 + Lw(~2 + &J(q& + &P&~@, + +%) 

+ 1/44ty%J + cQ2 (a2 + Gi,)(c% - (u,j2 - dt9/2(ql + &J((yo - 4) 
x (a2 + CT,)2 (a2 - 52) - dP(a, - o11)2 (a& + &al) 
+ 2dtyc%cJ + cy& + or,)(a& + E;j,E,) + dt9/2(oI, - &J(ol, - cr1)3 

- Llt9/2((Y, - cu,)(aro + cyJ(oL1 - G&x, + EJ + dtQ/2(cw, - GJ2 (a2 + Q2. 

(34) 

Note the similarity between the first and second invariants above with the second- 
order invariants. In equation (33) one new term --dt4(ar2 + (~~)(a,, + ZJ is present 
which does not appear for the second-order equation. (The similarity in A, and A, 
of the second- and third-order equations suggests that there might be a pattern 
for the nth order equation from which all lower order equation invariants are 
derived.) 

Note in equation (25) for the second-order case, that when the invariant term 
is not present, the roots of the amplification matrix for the difference scheme 
depend on the variable cclefficients in the polynomial approximation. In the 
absence of invariants, it is possible to choose the unspecified coefficients of 
the polynomial to obtain a stable formulation. However, when the terms in the 
partial differential equation yield incorrect signs for the invariants a time 
polynomial cannot be used except in one circumstance. This circumstance is: 
When every Schur-Cohn determinant is positive all roots lie outside the unit 
circle. In this case the difference equation is solved for the lowest time step and the 
values of the mesh are solved for row-by-row backward in time. This is a final 
value type problem of which the backwards heat equations is an example: 

au a2t4 -- 
t= a,s' 

VII. ILLUSTRATIVE EXAMPLES 

(35) 

In this section several examples of mixed initial and boundary value problems 
are worked out in detail. The Schur-Cohn determinants are utilized to choose 
the spatial derivatives approximations and the time polynomials, and demonstrate 
the preceding methods. 
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EXAMPLE I-A QUASI-LINEAR VIBRATING BEAM 

Consider the vibrating beam equation with quasi-linear coefficients: 

a% 
-&T= 44” 2 + g = a&. 

Because of the nonconstant nature of the coefficients dt may have to be modified 
during the computation. The first and second derivatives for variable dt are 

m+1 au urn - ~,m a% U,m+2 - $+l 

27% At, p= 
( &At2 ) - ("~tzq (lb) 

Using these formulas, a three time-step approximation to equation (Ia) is: 

a224 -- 
at2 a;u = 0 + [l + d t2d tlcla,,] Hm+2 

+ [-1 - dt,/dt, + dt,dt,c,a,,] Hm+l 

+ [4/4 + 44woI Hm w 
where c, + c2 + cg = - 1, When the coefficient c, is eliminated by the constraint, 
the first Schur-Cohn determinant for the characteristic equation is: 

d,=($2-1- (A t2>2 (1 + 2% + 2,)&l + 4 

+ (Llt,Llt1)2 (1 + 2Cl + 2c2 + 2ClC2 + c2"> %Al * (14 

Note the absence of the first invariant which is consequence of IX: = 0. 
Since 4 contains only even order derivatives, the choice of space derivative 

difference schemes is fixed, and it can be seen that these schemes have only negative 
definite real parts. If d, is to have the proper algebraic sign, then: 

2c, + c2 < -1. (14 

In order to avoid an implicit formulation for H m+2, use the following quantities: 

c2 = -2 
Cl = 0 (If) 

which forces the characteristic equation of (Ic) to be: 

p(h) = A2 + x (-1 - $ - 24drz%) + (2 + 44%). (k) 
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Using the values from equation (If), equation (Id) is: 

- 1 + (At,)2 (010 + alJ + (At&J2 %& . (Ih) 

The second Schur-Cohn determinant for a fixed time-step size using the above 
values of c1 and c2 is: 

A, = rltya!, - &J2 - 2A%,c?,(a, -j- 016) + 9At%,%?,2. (10 

It is seen in equation (Ih) that unless At, < At, , d, > 0 for values of 
kAx s 0, 2~, hi-,... instabilities are introduced into the calculation. However, 
if these disturbances due to At alone are sufficiently small the Von Neumann 
stability criterion may still be satisfied. Therefore, if the time-step changes are 
mild, the Schur-Cohn determinants are calculated with a fixed time-step. 

The boundary conditions used for (Ia) are: 

u(t, 0) = g (t, 0) = u(t, 1) = px (t, 1) = 0 ai) 

and the initial values: 

256 u(0, x) = 9 x2(1 - x)” Sin 27rx, g (0, x) = 0. W 

The initial conditions must be compatible with the boundary conditions at x = 0 
and x = 1, hence the unusual form of the state, ~(0, x). Notice that the initial 
condition has odd symmetry about x = .5. 

The candidate time-step size, AZ, must satisfy 

Notice that all terms of d, are positive, so only A, must be satisfied by a sufficiently 
small At step. The fourth derivative and the second derivative take on a maximum 
value for the space frequency k = n-/Ax. Hence, if equation (II) is satisfied at this 
value of space frequency, Proposition I does not have to be applied for all values 
of k in order to test the Schur-Cohn determinants. 

Equation (11) was satisfied during the computation by storing the maximum 
value of u found in the mth row in order to calculate the step size for the (m + 1)th 
row. The results of the numerical solution are presented in Figure 1 and Figure 2. 
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FIG. 1. Solution to example I for varying time. 

In Figure 2 the time-step sizes and the interval over which they were used are 
indicated. It can be seen in this figure that as the magnitude of the dependent 
variable changes, the step size does accordingly. 

A total of 25 steps were taken for the solution to reach t = .Ol with the variable 
method. It is of interest to know the accuracy of such a method and for this purpose 
the data of Table I were prepared. In this table several step sizes d t = .OOOl, 
rl t, = At,-, + .OOOOOl, and dt = BOO2 are compared against the variable step 
method. 

#I/3/3-3 
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TABLE I 
COMPARISON OF SOLUTIONS TO EXAMPLE I FOR VARIOUS TIME-STEP SIZES TIME t = .OlO 

Space 
Coordinate 

At = BOO1 
100 Steps 

At,,, = At,,-1 + .OOOOOl” At = BOO2 Variable At 
73 Steps 50 Steps 25 Steps 

0 0 0 0 0 
.05 0 0 0 0 
.lO .142479 .I42304 .142247 .141448 
.I5 .413499 .413020 .413305 .410235 
.20 .648381 A49757 .650741 .655771 
.25 .807888 .811518 .814558 .828327 
.30 .876309 .881295 .885435 .904830 
.35 .836471 .841922 .846196 .867121 
.40 .673310 .678363 .682067 .700624 
.45 .384862 .388236 .390656 .402554 
.50 -.000013 -.000013 -.000013 -.000013 

I7 (At, = .ooo1). 

DEPENDENT 

VAlUABLE,U 

FIG. 2. Solution to example I using variable time step. Ax = .05. 
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The results in this table change monotonically with the step size, indicating 
that the variations are predominately due to truncation errors. The second column 
for At, = At,-, + .OOOOO1 is an attempt to force the next time-step to be larger 
than its predecessor, but it does not appear to result in an adverse effect on the 
solution for such small changes. 

The variable step method, using one-fourth as many steps as for At = .OOl, 
remains within four per cent of the values calculated for this smaller step over the 
entire space interval. Clearly, this is adequate for most engineering applications. 

A linear problem very similar to this example is presented in [I 1, page 185. 
The important distinction is that equations (Id), (Ie), and (If) have fixed the 
difference method on a systematic basis which does not require intuition to find 
a stable scheme. 

EXAMPLE II-A THIRD ORDER SYSTEM 

To demonstrate the methods of analysis which have been derived for a higher 
order system, consider the third-order quasi-linear equation: 

g = (1 - 2t) u2g+g+(g)27$ 

+ (1 - 4x2) &z+(&&. 

For the domain: 

R:{O,<t<3, O<X<l} WV 

it is seen that two coefficients in equation (IIa) change sign due to the independent 
variables. Since these are odd order space derivatives, it is possible to choose a 
spatial difference expression to insure that their real parts are negative definite. 

The boundary and initial conditions are 

u(t, 1) = 0. 

Equation (IIa) can be put into a more familiar form: 

(W 
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where the ai have the definitions: 

It is evident that the a; are present throughout most of the solution, so that 
stability of the difference formulation will depend largely upon the invariants 
for a third-order equation given by equations (32), (33) and (34). 

The first invariant is: 
A, Gx 4% + q m 

and must be negative for one root to lie inside the unit circle. This is satisfied if 
Re{ol,} < 0, which implies that two separate difference schemes must be used 
to describe 01~ on the interval 0 < x < 1. 

If the point being calculated has space coordinate ndx < l/2 the difference 
scheme for the third derivative with respect to the space coordinate is: 

(1 - 4x2) & g (1 - 4x2) (-&j {-l/5$-, + Z.& - U,” + 1/5$++2) (IIg) 

and if nAx > l/2 the scheme used is: 

(1 - 4x2) $ G (1 - 4x2) (-&I {-l/lOz& + u,” - 3/2a,“,, + 3/5C+A. 
W) 

These difference schemes satisfy the condition Re{a,} < 0 and are examples 
of Property I. 

It is clear that these schemes require the used of artificial points off the boundary. 
These points are here treated as a smooth extension across the boundary. 

(Iii) 

uses a forward difference scheme if au/ax > 0 and a backwards scheme if au/ax < 0. 
When the values of (~l< are substituted into the expressions for the invariants- 

equations (32), (33), and (34)-the difference expressions will result in a stable 
calculation on “most of the mesh.” It is apparent that at x = l/2 the third 
derivative term of a2 is zero, so that serious difficulties could occur near this line. 

To solve for the numerical values, the changes in the difference methods are 
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built into the computer program as switches. The (m + 1)th time increment 
for a variable time step technique is calculated for the criterion: 

That is, the largest values for 0~~ are stored from the mth time step, then the 
maximum for all values of k is determined. The value of At,,, which satisfies 
the criterion is used as the next time-step. This method tends to force the invariants 
to dominate and is a negligible computation cost. By this method it is not assured 
that the Schur-Cohn determinants are satisfied for all values of space coordinate 
and all values of space frequency k. 

Figure 3 displays the solution to equation (63) where it is evident that the 
solution grows very rapidly. For time greater than t = .75 x 10-3, the time-step 

TIME INCEIEMENT, AtxlO’ 

-.- 400 

-*-60~ 

--800 

x*.2,%e.r,p \ ’ \ 

/ 

\ \ 1 
x=.35, x=.-f0 \ 

‘1 ’ 
\ 

\ ’ 

x=.50 ‘\ 1 
\ 

\ 
\ 

\ 
1. 

DEPENDENT 
Y&P\A6LE ,U 

FIG. 3. Solution to example II using variable time step. 
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TABLE II 

NUMERICAL R~sut~s FOR CONSTANT STEP AND 

VARIABLE STEP MIXTI-IODS OF EXAMPLE II, i = 1 x 1O-3 

Space 
Co-Cordinate 

Variable time Fixed time 
step method step At = 1 x 1W 

63 Steps 100 Steps 

.1 -.568216 x 1Oa -.560019 x 102 

.15 -.125347 x 10s -.123614 x 10s 

.20 -.201707 x 1Oa -.199029 x 10s 

.25 -.280954 x 10s -.277390 x 10s 

.30 -.360464 x 103 --.356113 x lOa 

.35 -.437683 x los -.432677 x 10s 
.40 -.509752 x 10s -.504280 x 1Oa 
.45 -.572863 x 10s -.567281 x 1Oa 
.50 -.572997 x 108 --.566659 x 10” 
.55 -.534742 x lo3 --.528561 x lOa 
.60 -.479677 x lOa -.473988 x lOa 
.65 -.414241 x 1Oa -/lo9192 x 103 
.70 -.342170 x IO* -.337863 x 10s 
.75 -.266331 x lo3 -.262883 x 10s 
.80 -.I89952 x 1Oa -.I87439 x 10s 
.85 -.117349 x 103 -.I15765 x 10s 
.90 -.549360 x IO2 -.I28874 x lo2 
.95 -.130616 x IO2 -.128874 Y lo2 

is almost continuously reduced by the criterion (IIj) for each successive row. 
The space increment used is AX = .05, so the time-step is reduced from At,, , 
where: 

At&lx3 < 1 At, < (.05)3 = 1.25 x 1O-4 014 

until the conditions of equation (IIj) are satisfied. In Table II a comparison is 
made at time t = 1 x 1O-3 between a conservative constant time-step size and 
the results of the variable step method. This table shows very favorable agreement 
for the two methods at this time. Notice for t > 1 x 1O-3 the fixed step method 
would be unstable since a step size smaller than the fixed increment is needed. 

During the course of the solution to this problem, the Schur-Cohn determinants 
are observed at every tenth row in time. The value of the determinants are calculated 
for various space frequencies k and locations on the x coordinate. Table III 
presents A,, A,, and A, for x = .I, 5, ,6, and .9, and is typical of the results 
for other parts of the mesh. From Table III it is seen that the signs -, +, - are 
not everywhere satisfied by the determinant sequence d, , A, , A, . This means 
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that at times roots of the characteristic equation fall outside the unit circle, but 
the damping of the overall mesh is sufficient to produce an apparently stable 
computation. A “majority” of the mesh points and frequencies have signs which 
are correct, but a quantitative measure of what this “majority” should be is not 
yet available. 

XI. CONCLUSIONS 

A systematic method of formulating difference expressions to initial value type 
partial differential equations has been presented. The Schur-Cohn criterion has 
demonstrated the need for definite difference schemes and provided a “fast” 
open loop technique to find the largest time step compatible with stability. The 
Schur-Cohn criterion has shown that multistep time polynomials must satisfy 
the “invariant” quantities which hold for all time polynomial formulations. 

This paper has presented an efficient method to numerically solve quasi-linear 
partial differential equations. It is hoped this work also provides additional 
insight into finite difference formulations of mixed initial and boundary value 
problems. 
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